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Abstract

This paper studies the effects of the initial relative void spacing, void pattern, void shape and void volume fraction on
ductile fracture toughness using three-dimensional, small scale yielding models, where voids are assumed to pre-exist in
the material and are explicitly modeled using refined finite elements. Results of this study can be used to explain the
observed fracture toughness anisotropy in industrial alloys. Our analyses suggest that simplified models containing a
single row of voids ahead of the crack tip is sufficient when the initial void volume fraction remains small. When
the initial void volume fraction becomes large, these simplified models can predict the fracture initiation toughness
(JIc) with adequate accuracy but cannot predict the correct J–R curve because they over-predict the interaction among
growing voids on the plane of crack propagation. Consequently, finite element models containing multiple rows of
voids should be used when the material has large initial void volume fraction.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ductile fracture of many structural materials is a result of void nucleation, growth and coalescence. In
practical applications, the J-integral value at the initiation of crack growth, JIc, is often used as an impor-
tant parameter to characterize the toughness of ductile materials. Micromechanics analysis of the fracture
process makes it possible to link the macroscopic fracture toughness and the microstructure of the material.
Two types of the mechanism-based approaches have been proposed in the literature to predict fracture
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toughness. In the first approach, voids are considered implicitly by using continuum damage material mod-
els, e.g., the Gurson–Tvergaard model (Gurson, 1977; Tvergaard, 1982). This approach is attractive for
simulation of extensive crack growth because detailed modeling of each individual void is avoided (Brocks
et al., 1995; Xia et al., 1995; Gao et al., 1998a,b). However, the primary disadvantage of this approach is
that a precise constitutive model for characterization of the void-containing material behavior during the
ductile fracture process is needed.
In the second approach, voids are considered explicitly and modeled using refined finite elements. A dis-

tinct advantage of this approach is the exact implementation of void growth behavior. In order to establish
crack advance, a failure criterion for the ligament between a void and the crack tip is required. Rice and
Johnson (1969) proposed that coalescence occurs when the size of the ligament between the crack tip
and the void becomes equal to the vertical diameter of the void. Brown and Embury (1973) suggested that
as soon as the spacing of neighboring voids becomes equal to their length, a slip plane can be drawn be-
tween the voids and the localized plastic flow causes ligament failure. Le Roy et al. (1981) proposed that
void linkage occurs when the longest axis of the void is of the order of magnitude of the mean planar neigh-
bor spacing. Koplik and Needleman (1988) put forth a method to determine the onset of void coalescence
by conducting unit cell analysis. Coalescence (internal necking) occurs when the macroscopic deformation
of the unit cell shifts to a uniaxial straining state.
The disadvantage of the explicit approach is due to computational limitations, only a limited number of

voids can be included in the crack tip region. The published literatures in this area are mainly two-dimen-
sional. Aravas and McMeeking (1985a,b) examined the interaction between the crack tip and a cylindrical
void under the plane strain, small scale yielding (SSY) conditions and estimated the fracture initiation
toughness using the coalescence models by Rice and Johnson (1969), Brown and Embury (1973) and Le
Roy et al. (1981). Yan and Mai (1998) analyzed the growth of a single cylindrical void ahead of a blunt
crack tip in the single-edge-notch bending specimens with different crack lengths. Arun and Narasimhan
(1999) investigated the effect of crack tip constraint on void growth under mixed modes I and II loading.
In these studies, only a single void is presented in the crack tip region. More recently, Gu (2000) considered
a row of six cylindrical voids ahead of the crack tip of the compact tension and center-cracked tension spec-
imens and discussed the effects of specimen geometry, crack length and specimen size on the J–R curve.
Tvergaard and Hutchinson (2002) investigated two distinct mechanisms for ductile crack initiation and
growth, the void by void growth mechanism and the multiple void interaction mechanism, by considering
a row of cylindrical voids ahead of a plane strain, SSY crack tip. They found that transition of the two
mechanisms is primary governed by the initial void volume fraction. For materials having smaller initial
void volume fraction, interaction occurs only between the crack tip and the nearest void and crack growth
follows a void by void mechanism. For materials with larger initial void volume fraction, simultaneous
interaction of multiple voids ahead of the crack tip occurs both during initiation and subsequent crack
growth.
Published literatures on three-dimensional analysis of ductile fracture process using the explicit approach

are relatively limited. Kuna and Sun (1996) investigated the influence of void arrangement on the macro-
scopic deformation and softening behavior of a unit cell and found that the 3D plane strain model contain-
ing a spherical void is stiffer than the 2D plane strain model having a cylindrical void. Thomson et al. (2003)
studied the effect of particle clustering on void damage rates in ductile failure of an aluminum alloy. They
assumed a regular distribution of clustered particles and carried out a series of unit cell analyses. To predict
fracture toughness, the void-containing cells need to be included in the crack tip region. Hom and McMee-
king (1989) studied the interaction of a spherical void and the crack tip. Their results suggest that the void
grows faster towards the crack tip direction than in the crack opening direction, revealing strong interaction
between the growing void and the crack tip. They also demonstrated that the initially spherical void grows
much slower than the initially cylindrical void. Kim et al. (2003) extended the 2D work of Tvergaard and
Hutchinson (2002) by considering a row of spherical voids ahead of the crack front in the 3D SSY model.
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Similar to the results obtained by Tvergaard and Hutchinson, Kim et al. found that transition from the
void by void growth mechanism to the multiple voids interaction mechanism is controlled by the initial void
volume fraction. Using results of a systematic unit cell analyses as the material failure criterion, they also
presented a procedure to predict fracture initiation, subsequent crack growth and the J–R curve.
Most of the previous 3D analyses assume voids having spherical shape initially and consider only a sin-

gle void or a single row of voids ahead of the crack tip. These analyses over-simplify the material micro-
structure and failure process. Many processed materials, such as rolled plates, have non-spherical voids
and the void spacing is not uniform in all directions. Besides void volume fraction, void shape, void orien-
tation and void distribution also have strong effect on the material failure mechanism and thus the fracture
toughness. These issues are examined in this paper.
2. Void distribution and finite element modeling

This study considers the mode I, SSY problem, i.e., the plastic zone size is assumed to be small compar-
ing to the geometric dimensions of the specimen. In ductile metals, voids often nucleate at relatively low
stress levels due to fracture or decohesion of the large inclusions. For the purpose of analysis, voids are
assumed to be present in the material at the onset of loading. Fig. 1(a) shows a periodical distribution
of voids in the plane of crack propagation. In an attempt to rationalize fracture behavior, a local coordinate
system is set up such that the x-axis represents the crack propagation direction, y-axis represents the crack
opening direction and z-axis represents the thickness direction. Considering the existence of symmetry
about the crack plane, only half of the region needs to be modeled. Except near free surfaces the deforma-
tion in the thickness direction can be assumed periodically symmetric. Neglecting the free surface effect
allows us to apply the periodic boundary conditions and consider half of the void spacing distance in
the thickness direction only, Fig. 1(b). Boundary conditions on the symmetry planes normal to z-direction
are prescribed as
F

uz ¼ 0;
tx ¼ 0;
ty ¼ 0;

ð1Þ
where uz represents the displacement component in z-direction, tx and ty represent the components of sur-
face traction in x and y directions respectively.
Three types of initial void shapes, spherical shape, prolate shape, and oblate shape, are considered. Fig. 2

shows the geometrical representation of the voids. The prolate and oblate voids are assumed to be
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ig. 1. (a) Periodical distribution of voids in the plane of crack propagation. (b) Domain of the boundary value problem.
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Fig. 2. Geometric representation of voids: (a) spherical void, (b) prolate void, and (c) oblate void.
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Fig. 3. Different initial void arrangements considered in this study.
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axisymmetric about the y-axis and an initial aspect ratio is defined as W0 = R0y/R0x. Therefore, W0 = 1
corresponds to the spherical shape, W0 > 1 corresponds to the prolate shape, and W0 < 1 corresponds to
the oblate shape.
Several initial void arrangements are considered in this study. In Fig. 3(a), only one row of voids are

included in the model. The voids are directly ahead of the crack tip. The spacing between adjacent voids
is X0, which is the same as the distance from the first void to the crack tip. In Fig. 3(b), two rows of void
are considered. The distance between the two rows is Y0 and a parameter k0 is defined as the ratio of the
void spacing in y-direction to the void spacing in x-direction, k0 = Y0/X0, measuring the relative void spac-
ing. In Fig. 3(c), voids in the second row are shifted towards the x = 0 plane by a distance of X0/2.
To resolve the crack tip deformation field and enhance convergence of the nonlinear iterations, the finite

element mesh contains an initial root radius at the crack tip. Previous studies have shown that the influence
of initial root radius becomes negligible if it is sufficiently small comparing to the void spacing. Here the
initial root radius of the crack tip is taken to be 0.01X0. Numerical solutions are generated by imposing
displacements of the elastic, asymptotic mode I field (plane strain) on the outer circular boundary. In this
study, the radius of the outer circular boundary is taken to be 10,000X0 to assure the small scale yielding
conditions being satisfied. The displacements at the outer boundary are given by
Fig. 4.
up of t
ux ¼
1þ m
E

ffiffiffiffiffiffi
r0
2p
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KI cos

h
2
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2

� �� �
;

uy ¼
1þ m
E

ffiffiffiffiffiffi
r0
2p

r
KI sin

h
2
4� 4m � 2cos2 h
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� �� �
;

ð2Þ
where KI represents the mode I stress intensity factor, (r,h) denote the crack tip polar coordinates, and r0 is
the radius of the outer circular boundary of the SSY model. Loading of the SSY model proceeds by impos-
ing displacement increments on the outer boundary according to the asymptotic fields.
(a) A typical finite element mesh of the SSY model. (b) Close-up of the crack tip region containing a row of five voids. (c) Close-
he crack tip region containing two rows of voids.
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Fig. 4(a) shows a typical finite element mesh of the SSY model. Close-up of the crack tip region is shown
in Fig. 4(b) and (c) for finite element modeling containing one row and two rows of voids respectively. A
typical mesh containing two rows of voids consists of 18,000 twenty-node, isoparametric, brick elements
(86,000 nodes) with reduced integration.
It is natural to consider the material ahead of the crack tip as an array of unit cells with each unit cell

containing a void at its center. The ratio of the void volume to the volume of the cell (including the void)
defines the void volume fraction of the material. For models having a single row of voids as shown in
Fig. 4(b), the cells are labeled with increasing numbers starting from the crack tip. For models having
two rows of voids, e.g., Fig. 4(c), the cells are labeled using indices ij, where i refers to the row number
and j refers to the position from the x = 0 plane, i.e., cell 21 refers to the first cell from the crack tip on
the second row.
The material chosen for this study obeys the power-law hardening (true) stress–strain relation
e ¼ r
E

r 6 r0;

e ¼ r0
E

r
r0

� �1=N
r > r0;

ð3Þ
where E = 200 GPa, r0 = 600 MPa, m = 0.3, and N = 0.1, which is representative of structural steel having
an intermediate strength and moderate strain hardening. The stress–strain relation is implemented in
ABAQUS (2001) by using the UHARD user subroutine.
3. Results and discussion

3.1. Void growth mechanisms

Previous studies (Tvergaard and Hutchinson, 2002; Kim et al., 2003) suggest that there exist two failure
mechanisms, single void growth mechanism and multiple voids interaction mechanism. The single void
growth mechanism is explained by the interaction of the crack tip with the nearest void and the subsequent
advance of the crack tip from one void to the neighboring void. The multiple voids interaction mechanism
is described by the simultaneous interaction of multiple voids positioned on a plane ahead of the crack tip
both during initiation and stable crack growth. Here we examine the effects of the initial relative void spac-
ing, void pattern, void shape and void volume fraction on the void growth and material failure mechanisms.
3.1.1. Model containing a single row of voids

We start with the model containing only one row of five voids ahead of the crack tip as illustrated in Fig.
3(a). Three void shapes, spherical (W0 = 1), prolate (W0 = 4) and oblate (W0 = 0.25), with different values
of initial void volume fraction, f0 ¼ ð4=3ÞpR20xR0y=ðX 20Y 0Þ, are considered in the analyses. Here the initial
shape of the unit cells ahead of the crack tip is assumed to be cubic, i.e., X0 = Y0. In Fig. 5, the ratio of
the void volume to its initial value, V/V0, is plotted as a function of crack tip loading, J/(X0r0), for each
of the five voids ahead of the crack tip. The trend remains the same for all six cases considered here,
Fig. 5(a)–(f). For f0 = 0.001, only the first void from the crack tip has significant volume increase as J/
(X0r0) increases, which manifests the single void growth mechanism. As f0 increases, the interaction among
voids becomes important, which in turn elevates the void growth rate. As a result, the ductile failure mech-
anism transits from single void growth to multiple voids interaction. When f0 = 0.005, several voids grow
almost simultaneously as J/(X0r0) increases. These results agree with the general conclusion drawn by
Tvergaard and Hutchinson (2002) and Kim et al. (2003).
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Fig. 5. Comparison of the void growth rates in cells ahead of the crack tip showing transition of the void growth mechanism from void
by void growth to multiple voids interaction as initial void volume fraction increases. Here the finite element models contain only one
row of voids.
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Fig. 6 compares the growth rate of the first void as a function of J/(X0r0) for the six cases. It can be seen
that both initial void shape and void volume fraction have strong effect on the rate of void growth. For the
same initial void volume fraction, the oblate void grows faster than the spherical void and the spherical void
grows faster than the prolate void, i.e., the void growth rate decreases with W. For the same initial void
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shape (W0), the void which has a larger initial volume fraction exhibits a faster growth rate, i.e., the void
growth rate increases with f0.
To demonstrate the significance of void interaction on material failure. The results obtained using the

model containing a row of five voids are compared with the results of a model containing only one void
ahead of the crack tip. As an example, we consider the spherical void shape. Fig. 7(a) compares the growth
rate of the nearest void from crack tip between the single void model and the model containing five voids
and Fig. 7(b) compares the reduction of the ligament between the crack tip and the nearest void between the
two models. The comparison are made for two initial void volume fractions, f0 = 0.001 and f0 = 0.01. For
the case of low initial porosity, the two models do not reveal any noticeable difference in void growth rate
and the reduction rate of the ligament between the crack tip and the nearest void. However, there is a
noticeable difference for the case of high initial porosity. Interaction among multiple voids elevates the void
growth rate and accelerates the failure process. Therefore, the finite element model must include sufficient
number of voids when the failure mechanism is due to multiple voids interaction. Earlier studies, e.g., Hom
and McMeeking (1989), often consider a single void ahead of the crack tip. These studies under-predict
void growth in high porosity materials and over-estimate the fracture toughness.
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Fig. 7. Comparison of (a) the growth rate of the first void from the crack tip and (b) the size reduction ratio of the first ligament
obtained using the single void model and the model containing five voids.
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3.1.2. Model containing two rows of voids (k0 = 1)
Previous studies only consider a single row of voids positioned on the plane of crack propagation. But in

real materials voids also exist off the plane of crack propagation. We first consider the void pattern shown
in Fig. 3(b) with equal initial void spacing in x and y directions, i.e., k0 = 1. For the prolate and oblate
voids, the initial aspect ratios are taken to be 4 and 0.25 respectively. Fig. 8 shows the ratio of the void
volume to its initial value, V/V0, as a function of crack tip loading, J/(X0r0), for several voids ahead of
the crack tip. For f0 = 0.001, only the first void directly ahead of the crack tip experiences significant growth
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Fig. 8. Comparison of the void growth rates in several cells in the crack tip region. Here the finite element models contain two rows of
voids with equal initial void spacing in x and y directions.
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as J increases, which demonstrates the single void growth mechanism. The growth rates of the voids in the
first row hardly show any difference from the results obtained using models containing only one row of
voids. This suggests that void interaction between different rows is negligible. It is worth noting that the
second void in the second row (void 22) has noticeable volume increase.
For f0 = 0.005, the first two voids in the first row experience significant volume increase as J increases,

Fig. 8(b), (d) and (f). This is different from the results shown in Fig. 5(b), (d) and (f), where all five voids
grow almost simultaneously. Clearly, the presence of the voids in the second row decreases the growth rates
of the voids in the first row. In contrast to the model containing only one row of voids where the material
above the void-containing cells is dense, for the model containing two rows of voids, the material surround-
ing the first row cells is porous. The stress triaxiality in porous materials cannot reach as high as in dense
materials. Therefore, the void growth rate is smaller in the model containing two rows of voids. The de-
crease in growth rate is more significant as the distance from the void to the crack tip increases. Conse-
quently, one should expect that the predicted J–R curve to be steeper using models containing two rows
of voids than using models containing only a single row of voids.
To demonstrate the transition to multiple voids interaction mechanism, we consider a model containing

two rows of spherical voids with f0 = 0.01. As expected, multiple voids grow concurrently as J increases,
Fig. 9. Similar results can be obtained by considering prolate and oblate voids.
In summary, the presence of the second row voids has negligible effects on the growth of the voids on the

plane directly ahead of the crack front when the initial void volume fraction is small and the void growth
mechanism is void by void. Consequently, for computational simplicity, it is sufficient to include only one
row of voids in the finite element model when the f0-value is small. However, as f0 increases, the effects of
the second row voids become more and more significant. Their presence delays the transition of the fracture
mechanism from void by void growth to multiple voids interaction. Therefore, for large f0-values, the finite
element should include multiple rows of voids.

3.1.3. Effect of relative void spacing

In above calculations, the void spacing is assumed to be equal in all three directions, i.e., the unit cells are
cubic. This assumption is not valid for some materials, e.g., the rolled plate where the void spacing is
shorter in the thickness direction. In this subsection the effect of relative void spacing is examined. The finite
element models used in Section 3.1.2 containing two rows of voids are modified such that k0 takes different
J/(X0σ0)
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Fig. 9. Volume increase of voids on the plane of crack propagation computed using a model containing two rows of spherical voids
showing the multiple voids interaction mechanism. Here f0 = 0.01.
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values. For the case of k0 = 1.5, the V/V0 versus J/(X0r0) curves for several voids ahead of the crack tip are
shown in Fig. 10, where the initial void shape is prolate withW0 = 4. When f0 = 0.001, the results displayed
in Fig. 10(a) are similar to those shown in Fig. 8(c): only the void directly ahead of the crack tip exhibits
significant growth. However, when f0 = 0.005, the results are quite different: Fig. 10(b) displays a multiple
voids interaction mechanism in contrast to the void by void growth mechanism shown in Fig. 8(d). There-
fore, an increase in k0-value intensifies the interaction among neighboring voids and reduces the f0 value at
which transition from the void by void growth mechanism to the multiple voids interaction mechanism
occurs.
For the case of k0 = 2/3, the V/V0 versus J/(X0r0) curves are shown in Fig. 11 for the oblate voids with

an initial aspect ratio of 0.25. Comparing with the results shown in Fig. 8(e) and (f), the smaller k0-value
reduces the interaction among the first row voids and delays the occurrence of the multiple voids interaction
mechanism.

3.1.4. Effect of void pattern

Here the void pattern shown in Fig. 3(c) is considered, where voids in the second row are shifted towards
the x = 0 plane by a distance of X0/2. The spherical void shape is used in the demonstration and the void
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Fig. 11. Comparison of the void growth rates in cells in the crack tip region. Here the finite element models contain two rows of oblate
voids with k0 = 2/3.
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spacing is assumed to be equal in x and y directions, i.e., k0 = 1. Fig. 12 shows the V/V0 versus J/(X0r0)
curves for three initial f0 values, 0.001, 0.005, and 0.01. For f0 = 0.001, only the first void directly ahead
of the crack tip experiences significant volume increase as J increases. For f0 = 0.005, the second and third
voids start to show significant volume increase at higher J levels. As f0 increases to 0.01, multiple voids in
the first row grow almost concurrently. These results are the same as those shown in Figs. 8(a), (b) and 9.
Change of void pattern by shifting the positions of voids in the second row has negligible effect on the grow
rates of voids in the first row.
3.2. Material failure criterion

Macroscopic crack initiation is said to have occurred upon coalescence of the growing voids with the
crack tip. Several mechanistic observations have been put forth to explain void coalescence. Coalescence
can occur through shear band formation, or through formation of ‘‘void sheets’’, or through impingement
of neighboring voids. It is very difficult to implement these coalescence mechanisms directly to the numer-
ical model. As a viable alternative, a critical ligament reduction ratio has been introduced to indicate the
onset of void coalescence (Tvergaard and Hutchinson, 2002; Kim et al., 2003). However, as shown by
Kim et al. (2003), the critical ligament ratio cannot be taken as a constant. The dependencies of the critical
ligament reduction ratio on the macroscopic stress state of the representative material volume, the initial
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void shape and void volume fraction, and other factors can be obtained by conducting a series of unit cell
analysis.

3.2.1. Macroscopic behavior of a representative material volume in the crack tip region

As shown in Fig. 3, the material in the crack tip region can be considered as an array of cells. Each cell is
a representative material volume containing a void at its center. The macroscopic stresses and strains of the
cells in the SSY model are computed as follows:
Rij ¼
1

V

Z
V

rij dV ;

Eij ¼
Xninc
inc¼1

DEij:

ð4Þ
In above equations, Rij represent the macroscopic stress components, rij represent the (true) stress compo-
nents of the matrix, V is the volume of the cell including the void, Eij represent the macroscopic (true) strain
components, inc is the index for a load increment and ninc is the total number of increments for a given
load. The macroscopic strain increments DEij are calculated from the displacement increments Dui as
DEij ¼ 1

2V

R
SðDuinj þ DujniÞdS. The cell volume V is computed as V ¼

R
Sx1n1 dS, where S is the outside sur-

face of the cell with ni being the components of the normal vector of S. These values are evaluated using the
finite element integration scheme (Zienkiewicz, 1977). The macroscopic effective stress (Re), hydrostatic
stress (Rh), and effective strain (Ee) are given by
Re ¼
1ffiffiffi
2

p Rxx � Ryy


 �2 þ Ryy � Rzz


 �2 þ Rzz � Rxxð Þ2
h i1=2

;

Rh ¼
1

3
Rxx þ Ryy þ Rzz


 �
;

Ee ¼
ffiffiffi
2

p

3
ðExx � EyyÞ2 þ ðEyy � EzzÞ2 þ ðEzz � ExxÞ2
h i1=2

:

ð5Þ
Since the deformed shape of the cells in the SSY model is symmetric about the y and z planes, the macro-
scopic shear stress/strain components are all zero and are not included in Eq. (5).
To characterize the macroscopic stress state of the cell, the following stress ratios are introduced
T ¼ Rh
Re

; q1 ¼
Rxx

Ryy
; q2 ¼

Rzz

Ryy
: ð6Þ
Zhang et al. (2001) and Kim et al. (2004) studied the effects of the triaxial stress state and found that the
stress triaxiality ratio T alone cannot uniquely characterize the effect of macroscopic stress state on void
growth and coalescence. The Lode parameter should be used to distinguish different stress states having
the same stress triaxiality ratio. Defining
tan h ¼ 2Rzz � Ryy � Rxxffiffiffi
3

p
Ryy � Rxx


 � ; ð7Þ
Zhang et al. (2001) and Kim et al. (2004) showed that a cell when subject to the same stress triaxiality ratio
would tend to react differently when h is different. The stress triaxiality ratio along with the parameter h can
be used to specify stress state.
Fig. 13 shows the variation of Re, T, q1 and h as the increase of applied load J for five cells ahead of the

crack tip in the model containing a single row of voids as shown in Fig. 3(a). Here the initial void shape is
prolate (W0 = 4) and the initial void volume fraction is f0 = 0.005. As expected, the stress triaxiality ratio T
and the parameter h are not constant during the loading history. The triaxiality ratio increases with applied
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with the applied load J for several cells ahead of the crack tip. Here the finite element model contains a single row of prolate voids with
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J in the plastic deformation region of the cell. A sudden increase in triaxiality ratio occurs due essentially to
collapse of the cell and rapid drop of Re. The parameter h also increases with the applied load. This is be-
cause the stress ratio in the thickness direction becomes larger as the applied J increases. Interestingly, the
macroscopic stress ratio q1 for each cell remains almost a constant after macroscopic plasticity occurs. Sim-
ilar results are obtained when different void shapes and initial void volume fractions are considered.
Fig. 14 compares the variations of Re, T, q1 and h of the first cell in models containing two rows of voids

with different void arrangements. The prolate void shape (W0 = 4) with initial void volume fractions of
0.001 and 0.005 is considered here. The trends are similar to those shown in Fig. 13 and it seems that
the relative void spacing (k0) does not have a significant effect on the macroscopic stress state of the first
cell.

3.2.2. Critical ligament reduction ratio

Considering the material composed of void-containing cells, failure of the ligament between neighboring
voids corresponds to the process of internal necking. Coalescence (internal necking) will occur when the
macroscopic deformation of the cell shifts to a uniaxial strain state (Koplik and Needleman, 1988). To uti-
lize this idea, we consider the representative material volumes subjected to the loading conditions similar to
the cells in the SSY models discussed in the previous section. A one-eighth symmetric finite element mesh of
the unit cell containing an initially spherical void at its center is shown in Fig. 15(a), where Fig. 15(b)
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display the resultant deformed shape of the model. Displacement boundary conditions are prescribed on
the outer surfaces of the cell. The displacement component in z-direction is constrained on the face normal
to the z-axis. The displacement components are specified on the faces perpendicular to the x-axis and y-axis
incrementally using the procedure developed by Faleskog et al. (1998) so that the macroscopic stress ratio
q1 = Rxx/Ryy remain constant during the loading history. Details of how to prescribe the boundary condi-
tions can be found in Kim et al. (2004).
Variation of the deformed cell width in x-direction with the macroscopic effective strain of the cell,

shown in Fig. 16(a), reveals the shift to uniaxial straining. Here results for three initial void shapes
(W0 = 0.25, 1, 4) are presented. The cells are initially cubic (k0 = 1) and the initial void volume fraction
is f0 = 0.005. The macroscopic stress ratio q1 is taken as 0.54. Fig. 16(b) shows the macroscopic effective
stress versus effective strain for the cell displaying the macroscopic softening. The circles in Fig. 16 represent
the onset of uniaxial straining mode, i.e., void coalescence.
At the onset of void coalescence, the ligament reduction ratio, defined as the ratio of the current ligament

length (shortest distance between two adjacent voids in x-direction) to the initial ligament length, can be
calculated. The critical ligament reduction ratio is denoted as vc. To determine vc, we conduct unit cell anal-
yses for the cases of various initial relative void spacing, void shape, void volume fraction and different val-
ues of the macroscopic stress ratio q1. It is found that vc depends on k0,W0, f0, and q1. An increase in either
initial void volume fraction, or void aspect ratio, or applied stress ratio tends to increase vc. Table 1 lists the
vc-values for different cases.

3.3. Fracture initiation toughness

Using the critical ligament reduction ratios obtained in Section 3.2.2 and the SSY models described in
Section 2, the fracture initiation toughness can be predicted. Here the fracture initiation is defined as when
the first void coalesces with the crack tip. To determine the onset of fracture initiation, it is necessary to
estimate the macroscopic stress ratio q1 of the ligament between the crack tip and the first void. However,
it is difficult to calculate the ligament stress ratio q1 directly. We approximate the ligament q1 value by
extrapolation using the macroscopic stress ratios calculated for the first two cells. With the q1 of the liga-
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uniaxial straining. (b) Macroscopic effective stress versus effective strain of the cell displaying the macroscopic softening. Here
q1 = 0.54, f0 = 0.005 and the symbols denote the onset of coalescence.



Table 1
vc values for different cases

Void shape Spherical Prolate Oblate

k0 1 1 1.5 1 2/3

f0

q1 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005 0.001 0.005

0.44 0.2373 0.3382 0.2538 0.3294 0.3280 0.4265 0.2102 0.3301 0.2310 0.2493
0.54 0.3514 0.4289 0.3711 0.4491 0.4631 0.5601 0.3093 0.4066 0.2574 0.2779
0.64 0.4563 0.5076 0.4884 0.5563 0.6091 0.7075 0.4010 0.4693 0.3108 0.2840
0.74 0.5562 0.5947 0.6125 0.6920 0.7697 0.8519 0.5096 0.5169 0.3457 0.3029
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ment estimated, the vc-values in Table 1 can be used to determine the applied J at which the first void coa-
lesces with the crack tip. This applied J value can be regarded as the fracture initiation toughness (JIc). Sim-
ple linear interpolation is used when the q1-value of the ligament is different from the q1-values listed in
Table 1.
Using the above approach, the variation of JIc with the initial relative void spacing, void pattern, void

shape and void volume fraction can be predicted. Fig. 17(a) shows the predicted dependence of JIc on the
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Fig. 17. (a) Predicted dependence of the fracture initiation toughness on the initial void volume fraction using models containing two
rows of voids with different initial shapes. (b) Comparison of the predicted JIc-values using models containing two rows of voids with
those using models containing one row of voids. (c) Effect of the initial relative void spacing on fracture initiation toughness.
(d) Relationship between JIc and the vc-value for the first ligament.
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initial void volume fraction using the finite element models containing two rows of spherical, prolate
(W0 = 4), and oblate (W0 = 0.25) voids. In general, the value of JIc increases as f0 decreases. For the same
value of f0, JIc is highest when the initial void shape is prolate and lowest when the initial void shape is
oblate, i.e., JIc increases with W0. The difference in predicted JIc for different void shapes becomes less sig-
nificant as f0 becomes large. Change of the void pattern by shifting the positions of the voids in the second
row (indicated by the cross symbol) does not result in noticeable difference in JIc.
Fig. 17(b) compares the predicted JIc-values using models containing two rows of voids with those using

models containing one row of voids. No noticeable difference is observed between the predicted JIc-values
using the two models. This rationalizes the approaches used in the previous studies, e.g., Gu (2000), Tverg-
aard and Hutchinson (2002), and Kim et al. (2003), where only one row of voids are included in the finite
element model. However, it is very important to point out that the single row void model over-predicts the
growth rates of voids other than the first one when f0 is large (see the results in Section 3.1) resulting in a
flatter J–R curve. To correctly predict the J–R curve for a material having large initial volume fraction, the
finite element model should include multiple rows of voids.
Fig. 17(c) demonstrates the effect of relative void spacing on the fracture initiation toughness. The results

show that the fracture toughness decreases with k0. This is easy to understand because larger k0-value
means shorter relative void spacing in the x-direction and thus earlier coalescence of the voids with crack
tip.
As defined previously, JIc is determined as the applied J-value when the reduction of the ligament length

between the first void and the crack tip reaches the critical ratio vc. The vc for the first ligament varies with
the initial relative void spacing, void pattern, void shape and void volume fraction. If we collect the vc-val-
ues for all the cases presented in Fig. 17(a)–(c) and plot vc versus the corresponding JIc-value for each case,
we can reveal a trend of JIc decreasing with the increase of vc, Fig. 17(d). It is interesting to note that the
relationship between JIc and the vc-value for the first ligament can be approximated by a straight line.
It is worth noting that in this study coalescence is defined as the onset of internal necking. Most engi-

neering materials contain more than one populations of inclusions and/or second phase particles. Due
to localized plastic deformation between the enlarged voids and between the void and the crack tip, small
particles in the ligaments will nucleate secondary microvoids. Rapid growth and coalescence of secondary
voids will accelerate the ligament failure process. Nucleation and growth of secondary microvoids are not
taken into account in this study, and therefore, the critical ligament reduction ratios determined above can
be regarded as the lower bound values and the fracture toughness values predicted using those critical lig-
ament reduction ratios are the upper bound values for the material.

3.4. Analysis of the anisotropy in fracture initial toughness of a C–Mn steel

The method described in previous sections can be used to analyze the anisotropy of a rolled steel plate.
Bauvineau (1996) and Bauvineau et al. (1996) conducted an investigation of the ductile fracture of a rolled
C–Mn steel, measuring the fracture initiation toughness (JIc) of the material for the �SL� and �TL� directions:
JIc(SL) � 50 kJ/m2 and JIc(TL) � 100 kJ/m2. Here, L is the longitudinal direction, T is the transverse direc-
tion and S is the short transverse direction. SL means that the crack is in a plane orthogonal to the S direc-
tion and propagates in the L direction, while TL means that the crack is in a plane orthogonal to the T
direction, propagating in the L direction. They also performed detailed metallographic analyses of the
inclusion population, mainly MnS particles. The volume fraction of MnS inclusions was determined as
0.0025. This value can be considered as the initial void volume fraction, f0, because void nucleation at inclu-
sions occurs at relatively low stress levels. The inclusions are flat and elongated, presenting a preferential
orientation due to the rolling process and display an ellipsoidal shape with mean diameters of 28, 15
and 3 lm in the L, T and S directions respectively and distance between inclusions as 179, 83, 64 lm in
the TL, LS and TS planes respectively. Based on these data, we adopt W0 = 1.7, X0 = 83 lm and k0 = 1



Table 2
Microstructural parameters and fracture initiation toughness of a C–Mn steel

Direction f0 W0 X0 (lm) k0 JIc (exp.) (kJ/m
2) JIc (pred.) (kJ/m

2)

TL 0.0025 1.7 83 1 100 123
SL 0.0025 0.13 179 1 50 71
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for the TL specimen and W0 = 0.13, X0 = 179 lm and k0 = 1 for the SL specimen. The value of k0 = 1 is
taken for simplicity. The tensile properties of the material at the test temperature can be characterized by
r0 = 190 MPa and n = 0.27. Pardoen and Hutchinson (2003) analyzed these experiments using a continuum
damage model, the Gologanu–Leblond–Devaux model. Their numerical predictions are in reasonable
agreement with the experimental results.
Here we use the discrete void model presented in previous sections to analyze the anisotropy of fracture

initiation toughness of the C–Mn steel in TL and SL directions. Since we are only interested in predicting
JIc, the computational models used in these analyses contain only one row of five voids directly ahead of the
initial crack. Table 2 summarizes the parameters characterizing the material and the comparison between
the measured and predicted fracture initiation toughness (JIc). The difference in toughness between the two
directions of propagation is well captured, and the predicted and measured fracture toughness values are in
reasonable agreement given the uncertainty in identifying the void spacing.
4. Concluding remarks

In this study, effects of the initial relative void spacing, void pattern, void shape and void volume fraction
on ductile fracture toughness are analyzed using three-dimensional, small scale yielding models, where
voids are assumed to pre-exist in the material and are explicitly modeled using refine finite elements. Based
on our detailed analyses, the following remarks can be made.
(1) Our analyses re-affirm the two distinct void growth mechanisms put forth by Tvergaard and Hutch-

inson (2002), i.e., void by void growth mechanism for materials containing small initial void volume frac-
tions and multiple voids interaction mechanism for materials containing large initial void volume fractions.
Our results reveal that, besides the initial void volume fraction, other factors also affect void growth mech-
anism when the initial void volume fraction is large. Voids deviated from the crack growth plane reduce the
interaction among voids on the crack growth plane and delay the transition from void by void growth
mechanism to multiple voids interaction mechanism. Increase of k0 (relative void spacing) intensifies the
interaction among neighboring voids and facilitates the transition from void by void growth mechanism
to multiple voids interaction mechanism. Change of the void distribution pattern by shifting the positions
of second row voids does not affect the growth rates of voids in the plane of crack propagation. Our results
also show that when other parameters are the same, the oblate void grows faster than the spherical void and
the spherical void grows faster than the prolate void.
(2) A critical ligament reduction ratio (vc), determined from unit cell analysis, is introduced to denote

material failure and it is found that vc varies with the initial relative void spacing, void pattern, void shape
and void volume fraction. The fracture initiation toughness (JIc) is determined as the applied J-value when
the reduction of the ligament length between the first void and the crack tip reaches the critical ratio vc. Our
results reveal that JIc increases with decreasing f0. For the same value of f0, JIc is highest when the initial
void shape is prolate and lowest when the initial void shape is oblate. Existence of the second row voids and
change of void pattern do not result in noticeable difference in JIc. However, the initial relative void spacing
has significant effect on JIc. These results can be used to explain why various degrees of fracture toughness
anisotropy are observed in industrial alloys.
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(3) Previous studies often use finite element models containing a single row of voids. Our analyses sug-
gest that these simplified models are sufficient when the initial void volume fraction remains small. When
the initial void volume fraction is large, these simplified models can predict JIc with sufficient accuracy but
cannot predict the correct J–R curve. In order to predict the J–R curve for a material having large initial
volume fraction, the finite element model should include multiple rows of voids.
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